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Abstract

Action recognition is a fundamental problem in com-
puter vision. However, all the current approaches pose the
problem in a multi-class setting, where each actor is mod-
eled as performing a single action at a time. In this work
we pose the action recognition as a multi-label problem,
i.e., an actor can be performing any plausible subset of ac-
tions. Determining which subsets of labels can co-occur is
typically treated as a separate problem, typically modeled
sparsely or fixed apriori to label correlation coefficients. In
contrast, we formulate multi-label training and label corre-
lation estimation as a joint max-margin bilinear classifica-
tion problem. Our joint approach effectively trains discrim-
inative bilinear classifiers that leverage label correlations.
To evaluate our approach we relabeled the UCLA Court-
yard dataset for the multi-label setting. We demonstrate that
our joint model outperforms baselines on the same task and
report state-of-the-art per-label accuracies on the dataset.

1. Introduction
Action recognition research has recently made tremen-

dous strides. In the past few years research has gone beyond
the classic single person short video [2, 30] to model ac-
tion parts, context, object interactions, group activities, and
spatio-temporal connections between actors [6, 12, 16, 28,
35]. However, what all these approaches have in common
is that they assume that action recognition is a multi-class
problem, where only the most probable label for each actor
is predicted.

Multi-class classification is a fundamental problem in
machine learning. For many approaches, training is per-
formed in a one-vs-all fashion, where instances from one
class are set as positive and the rest negative. Test instances
are evaluated and assigned to the class with the highest
score. This is appropriate for many problems where labels
are mutually exclusive. In semantic segmentation, for in-
stance, each pixel is assigned the name of the class it be-
longs to. Given that each pixel maps to a single object,

and assuming the list of classes do not overlap, multi-class
classifications is a natural formulation for the problem [31].
However, if the question we are interested in is “What are
they doing?” [7], assigning each actor a single label seems
unnecessarily limiting.

Consider the sample frame from the Collective Activity
dataset [7] in Figure 1. The two actors in the frame are talk-
ing while standing in line, two naturally co-occurring ac-
tions. The groundtruth labels for both, however, is the single
label queueing. In the multi-class setting where a classifier
is accordingly only allowed a single label to choose, assign-
ing the label talking or waiting to either actor is an error
and a False Positive for the talking or the waiting classifier.
On the other hand, knowing that the labels talking, queue-
ing, and waiting strongly correlate, a multi-label approach
would likely assign the three correct labels to both actors.
On the other hand, inversely correlated actions like queue-
ing and crossing are unlikely to be assigned at the same time
to an actor. While the dataset strongly motivated our work,
it was not a suitable candidate for our experiments because
the actors in most videos were performing the same action.

We propose to treat action recognition as a multi-label
classification problem. Each actor can be assigned a subset
of the power set of action labels. One can pose multi-label
classification as multi-class classification with an exponen-
tial number of classes, where each subset of the power set
is a separate class. This formulation, however, is compu-
tationally infeasible. Equally difficult to solve is formulat-
ing multi-label classification as structured prediction for a
densely connected Markov Random Field (MRF) of labels,
where inference is generally intractable, and typically ap-
proaches resort to restricting the structure of the MRF to
a tree or at least to small tree width. Instead, we extend
recent work on multi-label classification with densely cor-
related labels [13]. However, instead of assuming an apri-
ori known correlation matrix, we formulate both problems
- multi-label training and label correlation estimation - as a
joint max-margin bilinear optimization problem. This has
the advantage that both problems are optimized to jointly
minimize an appropriate loss on the training set. Addition-
ally, discriminatively learning both the classifiers and the
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Figure 1. The case for multi-label action recognition. People in natural settings perform more than one action at the same time. Our
approach takes into account pairwise correlations to ensure assigned action combinations are meaningful.

label correlations is empirically shown to yield classifiers
with better performance accuracy. Finally, given the lack
of datasets for our task, we relabeled the UCLA Courtyard
dataset [1] using the same set of labels, but instead each
actor is assigned a subset of labels instead of a single label.

Our main contribution in this paper is tackling action
recognition in the multi-label setting. While attributes, in-
herently multi-label, have been leveraged before in action
recognition to describe the action, the human body config-
uration, or the manipulated objects, the action recognition
problem in itself has always been treated as a multi-class
problem. To this end, we introduce a bilinear classification
approach where we jointly and discriminatively learn both
the classifiers and the label correlations, generalizing previ-
ous work where the label correlations were considered prior
knowledge or estimated offline.

The rest of this paper is organized as follows. The action
and activity recognition literature is surveyed in Section 2.
We introduce our joint formulation for multi-label training
and correlation estimation in Section 3, and we propose an
algorithm to efficiently optimize it. We then present the
relabeled UCLA Courtyard dataset and our experimental
setup, followed by the evaluation of our approach in Sec-
tion 4. Finally, we conclude and summarize our work in
Section 5.

2. Related Work

Early work in action recognition was mostly concerned
with single actors in isolated scenes [2, 30]. However, re-
cently a lot of interest was directed towards modeling the
complex interactions among observations explicitly. These

interactions could be between scenes and actions [22], ob-
jects and actions [11, 35], or actions performed by two or
more people [7, 18]. High-level and behavioral interactions
were modeled using context-free grammars [28], AND-OR
graphs [1, 12], dynamic Bayesian networks [34], network
flow [6, 16], and probabilistic first-order logic [4, 21, 24].
However, one common assumption remained: action recog-
nition was formulated as a multi-class problem. To the best
of our knowledge, we are the first to formulate action recog-
nition in a multi-label setting.

Recent work that uses attributes for action classification
is conceptually related to our work. While attribute and
multi-label classification share some of the techniques, se-
mantically speaking they are very different problems. Liu et
al. recognizes actions from videos by describing them with
attributes (indoors, torso-twist, etc.) [20]. Yao et al. use
a mixture of parts and attributes to classify actions in still
images [36]. These attributes can represent a description
of the action itself (indoors, two-handed), the pose needed
(twisted torso, bent elbow, crossed legs), or a manipulated
object part (bike seat, golf club). Both approaches classify
multiple binary attributes, whether in a pre-processing step
or as latent variables, to eventually classify a single action
performed by one person in the video or image. In con-
trast, we are concerned with busy scenes where actors can
be performing multiple actions simultaneously, and we are
interested in automatically understanding these actions and
how they correlate. We accordingly represent the actions
as a set of binary inter-dependent labels. Additionally, at-
tributes can still be leveraged and have the potential to ben-
efit multi-label action classification, but we leave this to fu-
ture work. Mosabbeb et al. recently proposed a joint ap-
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proach for multi-label action recognition and localization
from video, but in their case each video has multiple labels
for the actions it contains. In contrast, we label each person
in each frame with all the likely actions they are perform-
ing [25].

Early approaches for multi-label classification reduced
the problem to more common forms. McCallum proposed
to view the problem as a multi-class classification problem
with 2L classes, representing the power set forL labels [23].
While extremely competitive, this approach is very compu-
tationally limiting. It also relies on the 0/1 loss and does not
model the multi-label loss [13]. Boutell et al. also similarily
proposed a power set classifier for multi-label scene classi-
fication [3], while Hsu et al. proposed a regression-based
approach to map the label space to a lower dimensional
vector space [14]. Elisseeff and Weston modeled the multi-
label loss through a ranking solution [10], where more rel-
evant labels are ranked higher than less relevant ones, and
Cai and Hofmann used the same framework to model multi-
label loss hierarchically on a tree [5].

Taskar proposed a max-margin structured prediction ap-
proach that can be applied to multi-label classification [32].
Structured prediction relies on inference during training,
and generally exact inference in MRFs is intractable. Rousu
et al. extended this to modeling hierarchical loss in a struc-
tured prediction setting using a tree-structured model [27].
Restricting the model structure to a tree gives rise to many
efficient inference approahes. More recently Petterson and
Caetano leveraged MRFs with submodular pairwise inter-
actions [26]. Submodularity also makes efficient inference
possible through graph cut algorithms. Hariharan et al. took
a middle approach by assuming a densely populated pair-
wise correlation matrix is fixed apriori [13]. Their approach
generalizes one-vs-all classifiers in a principled way, and
they propose efficient specialized optimization algorithms
for it. While an apriori fixed correlation matrix can be ex-
pected to be given in a one-shot learning setting[17], it does
not readily exist in a general multi-label setting. In our work
we extend this approach and jointly optimize the multi-label
training and discriminatively estimate the label correlations
through a bilinear optimization problem, effectively learn-
ing the classifiers and the correlation matrix that together
minimize the classification loss on the training set.

3. Approach

3.1. Formulation

We formulate multi-label classification in a max-margin
framework. We are given N training samples and a set of
L labels. Sample i is represented by xi ∈ RD and yi ∈
{±1}L, which are respectively its associated feature vector
of dimensionality D and label vector of dimensionality L.
Each label yil is +1 if sample i is a positive sample for label

l and −1 otherwise. To this end, we optimize the following
objective function 1

F ≡ min
W,P

1

2
‖W‖2F + λ

1

2
‖P− IL‖2F +

C
∑
i

max
y

[
∆(yi,y)− (yi − y)TPTWTxi

]
,

(1)

where the bilinear classification function is represented by
y = PTWTx. The hinge loss in Equation 1 penalizes
the maximum margin violation for each sample under the
loss function of interest. In our case, the loss function ∆
represents the misclassification cost if one were to predict
label y for xi when the true label is yi.

Hariharan et al. introduced a special case of this formu-
lation where they assumed that P was a known correlation
matrix, apriori given or calculated [13]. Their resulting ob-
jective is only a function of W. In contrast, we discrimina-
tively learn P jointly with W so as to minimize the classifi-
cation error on the training set. This, in turn, yields stronger
bilinear classifiers but complicates the optimization. Our
objective function is biconvex (as we will show), and we
therefore approach it with an alternating optimization ap-
proach.

The formulation in Equation 1 has several advantages.
A similar formulation that explicitly models the power set
of labels, where the number of classes is 2L, would equiva-
lently require N2L constraints, regardless of the loss func-
tion used. This proves to be very limiting even for small
values of L. On the other hand, Equation 1 under a decom-
posable loss function has onlyNLmargin constraints. On a
different note, modeling the dense pairwise correlations be-
tween the labels in a structured prediction framework ren-
ders inference, a required step in the optimization process,
intractable. A common workaround is to restrict the graph
to a tree structure or to impose constraints on the form of
correlation (submodularity). In our case the label correla-
tion matrix can be densely specified without negatively af-
fecting the optimization problem.

3.2. Optimization

We approach the problem in Equation 1 using an al-
ternating optimization algorithm. Given a fixed P, we
transform F to an SVM-like formulation by substituting
Z = WP and R = PTP � 0 (Positive Semi-Definite)
to get the equivalent problem

1Our hinge loss is defined similarly to the form commonly used in
structured prediction [15, 33] and is therefore slightly different from that
in [13].
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G ≡ min
Z

1

2
tr(R−1ZTZ)+

C
∑
i

max
y

[
∆(yi,y)− (yi − y)TZTxi

]
.

(2)

The regularization term for P becomes constant and is
dropped. We next assume a decomposable loss function
∆(yi,y) =

∑
l δl(yil,y), and then we set the loss function

δl to the commonly used Hamming loss, inversely weighted
by the class frequency for label l to account for class imbal-
ance. For yil ∈ {±1}, this simplifies to δl(yil,−yil) which
we denote by δil for convenience. Putting everything to-
gether, we formulate the objective function equivalently in
constrained form

G ≡ min
Z,ξ

1

2
tr(R−1ZTZ) + C

∑
i

∑
l

ξil

s.t. 2yilz
T
l xi ≥ δil − ξil ∀i, l

ξil ≥ 0 ∀i, l (3)

This is a quadratic matrix programming problem. It can be
shown using a Schur complement argument that Equation 3
is convex in Z if and only if R � 0, which is satisfied by
definition.

An interesting case arises if we set P = IL, where IL is
the identity matrix of size L. This corresponds to decorre-
lating the classifiers and recovers the following problem

G0 ≡ min
Z,ξ

1

2
‖Z‖2F + C

∑
i

∑
l

ξil

s.t. 2yilz
T
l xi ≥ δil − ξil ∀i, l

ξil ≥ 0 ∀i, l (4)

with in turn is equivalent to L completely independent lin-
ear classification subproblems

G0 ≡
∑
l

Sl

with Sl ≡ min
zl,ξ

1

2
zT z + C

∑
i

ξi

s.t. 2yilz
T
l xi ≥ δil − ξi ∀i

ξi ≥ 0 ∀i (5)

Algorithm 1 Cutting plane algorithm for P
1: INPUT: V,Y, C, ε
2: W = ∅
3: repeat
4: P = {P : (pij = pji∧pij ≥ −1∧pij ≤ 1) ∀ i, j ∧

2
N pT

l

∑
i cilyilvi ≥ 1

N

∑
i cilδil −

ζl ∀ c ∈ W}
5: {P, ζ} = argmin

P∈P,ζ>0
λ

1

2
‖P− IL‖2F + C

∑
l

ζl

6: for l = 1 . . . L do

7: cil =

{
1 2yilp

T
l vi ≤ δil

0 otherwise
∀i

8: end for
9: W =W ∪ {c}

10: until max
l

(
1

N

∑
i

cilδil −
2

N
pT
l

∑
i

cilyilvi − ζl) ≤ ε

11: OUTPUT: P

Algorithm 2 Cutting plane algorithm for Z
1: INPUT: X,Y, λ, C, ε
2: W = ∅
3: repeat
4: Z = {Z :

2

N
zTl
∑
i

cilyilxi ≥
1

N

∑
i

cilδil −

ξl ∀ c ∈ W}
5: {Z, ξ} = argmin

Z∈Z,ξ>0

1

2
tr(R−1ZTZ) + C

∑
l

ξl

6: for l = 1 . . . L do

7: cil =

{
1 2yilz

T
l xi ≤ δil

0 otherwise
∀i

8: end for
9: W =W ∪ {c}

10: until max
l

(
1

N

∑
i

cilδil −
2

N
zTl
∑
i

cilyilxi − ζl) ≤ ε

11: OUTPUT: Z

This simple reduction motivated choosing the identity ma-
trix as the regularization point for P, i.e. the regularizer
penalizes deviation from it. Similarly, in our optimization
procedure, the initial value for P is IL. Additionally, this
turned out to be an appropriate baseline in our experiments,
corresponding to 1-vs-all linear SVM classifiers for the ac-
tion labels, which is a commonly used benchmark for multi-
label methods [3, 9, 37].

We further reduce the number of constraints by employ-
ing a one-slack formulation instead [15]. The idea is to re-
place the N constraints on the hinge loss, one for each of
the training samples, with a single constraint on the sum
of the hinge losses for all the samples, hence we replace
ξil with one slack variable per label ξl. It can be shown
that the solution to the one-slack formulation is extremely
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sparse and is equivalent to the solution to the original prob-
lem if ξ∗l = 1

N

∑
i ξ
∗
il, where ξ∗ is the slack vector at the

minimum solution [15].
We proceed to solve the one-slack formulation of Equa-

tion 3 using a cutting plane approach [33]. At each iteration
we find the violated constraints for all the training samples,
and we append them to the working set. This algorithm ter-
minates in a number of iterations independent of the output
space size [33], and in our experiments we needed fewer
than 50 iterations to converge and were faster than the im-
plementation from [13]. The process is detailed in Algo-
rithm 1.

Solving Equation 3 we find Z, and we can then recover
W = ZP−1. Similarly, given a fixed W, we can turn F to
an SVM-like formulation by first transforming the feature
vectors to vi = WTxi, where each vi is of size L, to get
the equivalent problem

H ≡ min
P

λ
1

2
‖P− IL‖2F +

C
∑
i

max
y

[
∆(yi,y)− (yi − y)TPTvi

]
.

(6)

Under the same decomposable loss function ∆ previously
introduced, we reformulate the objective function equiva-
lently in constrained form

H ≡ min
P,ζ

λ
1

2
‖P− IL‖2F + C

∑
i

∑
l

ζil

s.t. 2yilp
T
l vi ≥ δil − ζil ∀i, l

ζil ≥ 0 ∀i, l (7)

Equation 7 is a convex quadratic programming problem.
To enforce P to be a symmetric correlation matrix, we add
the constraints pij = pji, pij ≥ −1, and pij ≤ 1. We then
transform the problem to a one-slack formulation as before,
replacing ζil with one slack variable per label ζl. The re-
sulting optimization problem is also solved using a cutting
plane algorithm, where we iteratively find the violated con-
straints for all the training samples, and append them to the
working set. The process is detailed in Algorithm 2.

Our alternating optimization approach is illustrated in
Algorithm 3. We start by initializing P to IL. We then
proceed to alternate between fixing P and solving for W,
and then fixing W and solving for P.

4. Experiments
4.1. Setup

Given that there are no multi-label action recognition
datasets, we set out to relabel an existing datasets for our

Algorithm 3 Learning Bilinear Multi-Label Classifiers
1: INPUT: X,Y, λ, C, ε, T
2: for t = 1 . . . T do
3: if t = 1 then
4: Set Pt = IL
5: else
6: Set vi = WT

t−1xi ∀i
7: Calculate Pt from Algorithm 1
8: end if
9: Set R = PT

t Pt

10: Calculate Zt from Algorithm 2
11: Set Wt = ZtP

−1
t

12: if max |Zt − Zt−1| < ε then
13: break
14: end if
15: end for
16: OUTPUT: Pt and Wt

task. Datasets like KTH [30] and Weizmann [2] feature
only a single actor in isolated scenes and are therefore not
suitable for a multi-label setting. Similarly, the UT Interac-
tion dataset [29] only features a single action between two
actors. On the other hand, we considered the Collective Ac-
tivity dataset [7]. The dataset features multiple people in
different situations, but in most videos all the actors were
performing the same action (e.g., dancing), which unfortu-
nately also made it unsuitable for our task.

We set out to relabel the UCLA Courtyard dataset, which
features two different bird’s eye viewpoints of the same
courtyard at the UCLA campus [1]. The dataset features
six high resolution videos of many actors in a natural set-
ting performing a variety of actions on both the individual
level and the group level. Each actor is annotated by one
of 8 orientations, one of 7 poses, and one of 10 individual
actions: 1. riding a skateboard, 2. riding a bike, 3. riding a
scooter, 4. driving a car, 5. walking, 6. talking, 7. waiting,
8. reading, 9. eating, and 10. sitting. We used the same set
of labels for our multi-label experiments. The dataset was
evenly split (50-50%) for training and testing, maintaining
similar class label distributions for the two halves [1].

Similar to Amer et al. [1], we extracted and normal-
ized Histogram of Oriented Gradients (HOG) [8] features
around motion-based STIP features and Histogram of Opti-
cal Flows (HOF) [19] around KLT tracks from the bound-
ing box of each actor, and therefore the spatial and tempo-
ral characteristics were implicitly accounted for through the
feature descriptors.

Ultimately the dataset contains over 4.4 million frames,
and therefore manually relabeling the entire dataset is very
time-consuming. We resorted to bootstrapping the rela-
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Figure 2. A sample frame from the relabeled UCLA Courtyard dataset.In the resulting labels, 56.9% of all actors are performing two or
more actions at the same time and 4.9% are performing three or more actions.

beling process: using the current annotations (pose, ori-
entation, individual action, group action, group orientation,
etc.), we predict a new set of action labels that include the
current action label among others. For instance, a person
labeled as eating while facing another person, both part
of a group labeled as sitting, is relabeled as sitting, eat-
ing, and talking. We first ran the labels through a large set
of similar relabeling rules and then we manually inspected
the outcome and optimized the rules to correct any erro-
neous labels as necessary. This process was repeated a few
times to ensure high fidelity for the groundtruth labels. Fig-
ure 2 shows a sample frame with multi-label actions. Given
the high resolution of the dataset, we zoomed in on a few
groups. While the labels for the top group did not change,
other groups received additional appropriate action labels.
Relabeling was bootstrapped using rules that took into ac-
count all the dataset annotations (pose, orientation, individ-

ual action, group action, group orientation, etc.) to predict
new action labels. In the resulting labels, 56.9% of all ac-
tors are performing two or more actions at the same time
and 4.9% are performing three or more actions.

4.2. Results

Since we initialize the label correlation matrix in our
algorithm to the identity matrix ID, the binary classifiers
trained after the first iteration correspond to 1-vs-all lin-
ear SVMs trained independently on the same features. This
is equivalent to disregarding label correlations and just op-
timizing Equation 5. Independently training label classi-
fiers in a multi-label setting is an appropriate standard base-
line [3, 9, 37], which in our algorithm corresponds to the
output after the first iteration. This allows us to evaluate
the performance improvement through the iterations by the
optimization algorithm. Additionally, we implemented the
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multi-label approach of Hariharan et al. [13] as a second
baseline, where the label correlation matrix is estimated of-

fline from the training data as:
1

N

N∑
i

yiy
T
i . Our experi-

ments verify that our approach that discriminatively learns
the correlations yields better classification performance.

We report our quantitative results in Table 1. While we
are using similar features and data splits to Amer et al. [1],
we are learning with an entirely different label set, and
therefore we cannot directly compare to their results. We in-
clude the numbers nonetheless due to the lack of multi-label
action recognition datasets and benchmarks. We report the
per-class accuracies as well as the mean over all classes.
We also report the Hamming loss over all testing samples,
which is a common measure for multi-label classification.

As can be seen from the table, our baseline classifier per-
formance is very competitive. We attribute the significant
improvement in the mean accuracies to using the weighted
hamming loss, in contrast to the Hamming loss (0-1) which
optimizes the total classification accuracy. The per-label
accuracies for classes like driving a car, which looks very
unique compared to other classes, is already at 100% after
the first iteration. The algorithm converged after 5 iterations
of alternating optimization. The improvements, on aver-
age, are consistent through the iterations, and more specif-
ically, labels like reading and sitting received the highest
gain through the label correlations, presumably through the
correlation with labels like eating. Similarly the accuracy
for riding a scooter also significantly increased, presumably
through the correlation with sitting. The Hamming loss also
decreased through the optimization. It did however slightly
increase the last iteration, which again can be attributed to
using the weighted hamming loss, which further increased
the mean accuracy but slightly sacrificed the total accuracy
(1 - Hamming loss).

We also visualize the final label correlation matrix P
calculated by our algorithm in Figure 3. Lighter shades,
as seen on the main diagonal, denote positive correlations,
and darker shades denote negative (or inverse) correlations.
Some of the learned correlations are very intuitive. For
example, walking and talking are likely to co-occur at the
same time, which is accurately reflected in the matrix. In
contrast, eating and biking are inversely correlated as ex-
pected.

5. Conclusion

We posed action recognition as a multi-label classifica-
tion problem. Instead of limiting each actor in a natural
scene to a single label, we proposed a multi-label setting
that is more natural to the problem. Multi-label classifica-
tion has been either reduced to more common forms, such
as multi-class classification, or treated as a Markov Random

Walk
Wait

Talk
Car

Skate
Scooter

Bike
Read

Eat
Sit

Walk

Wait

Talk

Car

Skate

Scooter
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Figure 3. A visualization of the final label correlation matrix P. In-
tuitively, walking and talking are positively correlated, while walk-
ing and waiting were unlikely to co-occur in the dataset.

Field labeling in a structured prediction setting, but both
approaches suffer from drawbacks. We instead extended
recent work on max-margin multi-label classification to the
case where the label correlation matrix is not apriori known,
and we posed the multi-label classification and label corre-
lation estimation as a joint problem. We then devised an
alternating optimization algorithm to minimize the coupled
problem. Finally, given the lack of multi-label action recog-
nition datasets, we relabeled the UCLA Courtyard dataset
for our task. We report state-of-the-art results on the dataset
using our approach. In future work we plan to investigate
integrating group activities into our framework.
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