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Abstract. Person re-identification has recently attracted a lot of at-
tention in the computer vision community. This is in part due to the
challenging nature of matching people across cameras with different
viewpoints and lighting conditions, as well as across human pose varia-
tions. The literature has since devised several approaches to tackle these
challenges, but the vast majority of the work has been concerned with
appearance-based methods. We propose an approach that goes beyond
appearance by integrating a semantic aspect into the model. We jointly
learn a discriminative projection to a joint appearance-attribute sub-
space, effectively leveraging the interaction between attributes and ap-
pearance for matching. Our experimental results support our model and
demonstrate the performance gain yielded by coupling both tasks. Our
results outperform several state-of-the-art methods on VIPeR, a stan-
dard re-identification dataset. Finally, we report similar results on a new
large-scale dataset we collected and labeled for our task.

1 Introduction

Person re-identification is the problem of matching people across multiple, typ-
ically non-overlapping, cameras [8]. Matching is complicated by variations in
lighting conditions, camera viewpoints, backgrounds, and human poses. Research
in person re-identification has been motivated by increasing safety and security
concerns in public spaces, where face recognition and other fine biometric cues
are not available because of the insufficient image resolution [9].

Approaches addressing this problem usually focus on either representation,
where better descriptors or features are used to specifically address this prob-
lem [8, 10, 7, 6], or learning, where a better similarity or distance function is
proposed [31, 12, 11, 20, 1]. Our work falls into the latter category. While some
recent approaches use one or more standard distance metrics (e.g . Euclidean
distance or Bhattacharyya distance) for matching [21, 15, 13], approaches that
instead learn a distance metric for the problem have had better success.

? This work was done while the authors were at Siemens Corporate Research, Prince-
ton, NJ



2 Khamis et al .

matching rank

Female

Short Hair

Brown Pants

Blue Top

Black Bag

Appearance-Based Model

Joint Appearance-Attribute Model

Female

Blue Top

Fig. 1. Overview of our approach. An image of a person of interest on the left (the
probe) is used to rank images from a gallery according to how closely they match that
person. The correct match, highlighted in a green box, can be difficult even for humans
to find given the severe lighting and pose differences between the two images. Similarly,
approaches that model only appearance are likely to suffer from these challenges. Our
main contribution, on the other hand, is the integration of a semantic aspect, through
attributes, into the matching process. We jointly learn a distance metric that optimizes
matching and attribute classification by projecting the image descriptors to a coupled
appearance-attribute space. Leveraging this representation, our approach gains some
invariance to lighting and pose and achieves better performance on the re-identification
task.

We illustrate our approach to person re-identification in Figure 1. Given an
image of a person of interest (the probe), we are interested in a list of subjects
images (the gallery), ranked according to how well they match the probe. It
can be quite challenging even for a human to find the correct match for the
probe image in the figure. Consequently, appearance-based models, represented
at the top of the figure, tend to suffer from the severe lighting and pose changes.
We instead approach this by augmenting appearance with a semantic attribute-
based description of the subject and jointly optimize both ranking and attribute
classification. As shown in the figure, the semantic representation in our model
imposes an attribute-consistent matching, introducing invariance to the extreme
lighting and pose changes, and at the same time the resulting attribute clas-
sifiers are better tuned because of the regularization imposed by the matching
constraints. We validate both claims empirically. It is noteworthy that our ap-
proach is not limited to person re-identification and applies to any matching
problem.

We first demonstrate how learning a distance metric optimized over ranking
loss, which is a natural aspect of the re-id problem, outperforms one subject to
binary classification constraints as in [31, 19]. We learn a distance metric that
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projects images of the same person closer together than to images of a different
person. We then augment the projection subspace using semantic attribute in-
formation. Our semantic representation is based on the types of attributes that
humans might use in describing appearance (short sleeves, plain shirt, blue jeans,
carrying bag, etc.). We jointly optimize for the ranking loss and the attribute
classification loss and validate how attribute-consistent matching in this cou-
pled space achieves performance better than several state-of-the-art approaches
on VIPeR [9], a standard person re-identification dataset. We also report our
results on a new dataset (Indoor-ReID) we collected and labeled for this task.

The rest of this paper is organized as follows. The current literature is sur-
veyed in Section 2. We introduce our ranking formulation and extend it with
attribute-consistency in Section 3 and discuss how to efficiently learn a metric
over the coupled appearance-attribute space. We then explain our experimental
setup and evaluate our approach in Section 4. Finally, we conclude and summa-
rize our work in Section 5.

2 Related Work

Approaches for person re-identification are generally composed of an appear-
ance descriptor to represent the person and a matching function to compare
those appearance descriptors. Over the years, several contributions have been
made to improve both the representation as well as the matching algorithm in
order to increase robustness to the variations in pose, lighting, and background
inherent to the problem. Many researchers addressed the problem by proposing
better feature representations for the images. Ma et al . [18] use local descriptors
based on color and gradient information and encode them using high dimen-
sional Fisher vectors. Liu et al . [17] use different feature weights for each probe
image based on how unique these features are to the subject. Zhao et al . [30] use
unsupervised saliency estimation and dense patch matching to match subjects,
which can even be augmented with a supervised approach.

Several approaches also exploit the prior knowledge of the person geometry
or body structure to obtain a pose invariant representation. Farenzena et al . [7]
accumulate features based on the symmetry of the human body. Gheissari et
al . [8] match fitted triangulated meshes over segmented images of subjects. Bak
et al . [2] use body parts detectors with spatial pyramid matching. Similarly,
Cheng et al . [6] utilize Pictorial Structures (PS) to localize the body parts and
match their descriptors. However, these approaches tend to suffer if the pose
variations are too extreme, which can invalidate symmetry or break part-based
detectors.

Given feature based representations of a pair of images, an intuitive approach
is to compute the geodesic distance between the descriptors, for instance, using
the Bhattacharyya distance between the histogram-based descriptors or L2-norm
between descriptors in a Euclidean space. However some features may be more
relevant for appearance matching than others. To this end, several approaches
have been proposed to learn a matching function in a supervised manner from a
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dataset of image pairs. For instance, Gray et al . [10] use boosting to find the best
ensemble of localized features for matching. Prosser et al . [22] propose ensemble
RankSVM to solve person re-identification as a ranking problem, while Wu et
al . [29] solved a ranking problem subject to a listwise loss instead of a pairwise
loss in an effort to realize results closer to what a human would generate.

On the other hand, approaches that learn a distance metric on the feature
descriptors have had better success on standard benchmark datasets. Zheng et
al . [31] learn a metric by maximizing the probability of a true match to have
a smaller distance as compared to a wrong match. Köstinger et al . [12] learn
a Mahalanobis metric that also reflects the properties of log-likelihood ratio
test and reports better performance over traditional metric learning. Hirzer et
al . [11] propose a distance learning approach which is not guaranteed to learn
a pseudo-metric, but nonetheless achieves expected performance with a reduced
computational cost. Pedagadi et al . [20] extract very high dimensional features
from the subject images, which then go through multiple stages of unsupervised
and supervised dimensionality reduction to estimate a final distance metric. An
et al . [1] learn a distance metric using Regularized Canonical Correlation Anal-
ysis (RCCA) after projecting the features to a kernelized space. Finally, Mignon
et al . [19] learns a PCA-like projection to a low-dimensional space while pre-
serving pairwise constraints imposed by positive and negative image pairs. We
extend the latter’s work to a joint optimization framework and learn a projection
to a coupled appearance-attribute subspace, and we successfully report a signif-
icant performance improvement. The integration of attribute-consistency into
the matching process, which is the main thesis of our work, is also applicable to
other metric learning approaches.

With the recent success of attribute-based modeling approaches [14, 4, 5], ear-
lier attempts have also been made to overcome the lighting and pose variations
by integrating attributes into the matching process. However, the existing ap-
proaches simply augment the extracted feature descriptors with attribute labels
obtained independently and thus fail to capture the interactions between the
attributes and the identities [27, 15, 16]. Our work attempts to simultaneously
learn matching and attribute classification, and through the coupled process
improve the performance of both tasks.

Our approach also does not require access to the attribute labels at test time.
In that aspect our work is also related to matching with privileged information.
Learning Using Privileged Information (LUPI) is a learning framework where
additional information, in our case the attribute labels, is available at training
time but is not provided at the test stage [26]. Recent work investigated using
attributes in a two stage approach, where the result of the attribute classifiers is
used to scale SVM margins in the second stage [24]. We instead integrate both
attributes and matching in a single objective function and optimize them jointly.
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3 Approach

3.1 Attribute-Consistent Matching

Most work on person re-identification focuses on appearance-based methods,
which intuitively suffer from the lighting and pose changes inherent to any match-
ing problem. We instead propose to complement appearance models, which are
nonetheless crucial to matching, with a semantic aspect. The semantic repre-
sentation in our approach is introduced through the integration of attributes
into the matching process. We jointly learn a discriminative projection to a joint
appearance-attribute subspace. Unlike LMNN [28], this subspace is of lower di-
mensionality and is discriminatively learned for the purpose of matching [19].
By performing matching in this space, our model exhibits some invariance to the
lighting and pose conditions that impede models which rely only on appearance.

We start by introducing our notation. We initially extract a set of feature
vectors x for the subjects in the dataset. We index the features as triplets, where
first two vectors x(i,1) and x(i,2) corresponds to images of the same subject, while
the third vector x(i,3) corresponds an image of a different subject. We are also
given attribute labels y for the same subjects, where yjk denotes the attribute
value of image j for attribute k. To this end, we optimize the joint regularized
risk function:

min
A,B

F (A,B) =

min
A,B

λA
2
‖A‖2F +

λB
2
‖B‖2F +∑

i

`(1 +D2
AB(x(i,1),x(i,2))−D2

AB(x(i,1),x(i,3)))+

C
∑
j

∑
k

`(1− yjkbkxj), (1)

where the two linear mappings A and B map input vectors x into the joint
subspace defined by the two projections, and ` is a loss function. The projection
is learnt so as to satisfy the joint constraint set. The subspace defined by A only
imposes ranking constraints on feature vector triplets; distances between images
of the same subject are smaller than those between images of different subjects.
The subspace defined by B includes additional classification constraints that
encode the semantic aspect of our model, where each dimension in this subspace
represents an attribute, and each row bk of the matrix B is basically a linear
classifier for that attribute.

The objective function in Equation 1 is jointly minimizing two loss functions:
the ranking loss for the matching and the classification loss for the attribute
subspace. Optimizing a ranking loss is arguably more appropriate for person
re-identification where ranking is performed at test time. One advantage of this
formulation is that both the distance constraints and the attribute classification
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constraints can be sparse. We explicitly included a regularization term for both
matrices to avoid trivial solutions and to achieve a faster convergence rate.

The squared distance between two images in this coupled space can be defined
as:

D2
AB(xi, xj) =

∥∥∥∥[AB
]

(xi − xj)
∥∥∥∥2
2

= ‖A(xi − xj)‖22 + ‖B(xi − xj)‖22, (2)

which is also the sum of the squared distances in the subspaces defined by the
two linear mappings A and B.

To empirically validate our claim that our attribute-consistent model is more
discriminative, we strip our model of the attribute classification constraints. The
resulting model is parameterized only by the linear operator A which projects the
input vectors x to the same dimensionality as our original model in Equation 1.
This allows us to isolate the effect of the attribute classification constraints on
the matching process. This stripped baseline model is then defined as follows:

min
A

G(A) = min
A

λ

2
‖A‖2F +∑

i

`(1 +D2
A(x(i,1),x(i,2))−D2

A(x(i,1),x(i,3))) (3)

where the distance in the low dimensional space is defined as

D2
A(xi, xj) = ‖A(xi − xj)‖22. (4)

3.2 Optimization

To this point we set the loss function in our experiments to the hinge loss:

`(x) = max(0, x), (5)

which is convex but not differentiable. There are many smooth approximations
of the hinge loss (e.g ., the generalized logistic function [19]), but given that we
regularize our objective explicitly, convergence rate was not an issue. Under the
hinge loss our distance constraints are similar to those in LMNN [28], while our
classification constraints correspond to the constraints of a linear SVM. This
means that the distance constraints in the objective function are not convex
with respect to A or B. However, an iterative subgradient descent approach
on the parameters of both matrices has been shown to converge to good local
optima [25, 28].

We can now compute a subgradient of the objective with respect to the
variables A and B. A subgradient with respect to A is:
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∂H(A,B)

∂A
= λAA + 2A

∑
i∈I(A,B)

(C(i,1),(i,2) −C(i,1),(i,3)) (6)

where the set I is the subset of triplets T that violate the distance constraints
and is defined formally as:

I(A,B) =
{
i ∈ T : D2

AB(x(i,1),x(i,3))−
D2

AB(x(i,1),x(i,2)) < 1
}
, (7)

and Ci,j is the outer product matrix for the difference between two feature
vectors xi and xj :

Ci,j = (xi − xj)(xi − xj)
T . (8)

Similarly, a subgradient with respect to row bk in B is:

∂H(A,B)

∂bk
= λBbk + 2C

∑
j∈Jk(B)

yjkx
T
j +

2bk

∑
i∈I

(C(i,1),(i,2) −C(i,1),(i,3)) (9)

where the set Jk is the subset of feature vector indices that are misclassified by
attribute classifier k, which is represented by row bk:

Jk(B) =
{
j ∈ L : yjkb

T
k xj < 1

}
(10)

To learn the linear mappings we then use a projected subgradient descent
algorithm [23]. The iterative projections to the constrained Frobenius norms
dramatically sped up the convergence rate for the learning procedure. We also
employ restarts to avoid local minima. The details of the approach are provided
in Algorithm 1.

4 Experiments

4.1 Setup

We evaluated our model on VIPeR [9], a standard person re-identification dataset,
as well as the new dataset, Indoor-ReID, which we collected and labeled. VIPeR
contains 632 images of 316 subjects captured from 2 cameras. The images are
captured outdoors and have significant lighting and viewpoint variations. We
use the 15 binary attributes annotated by [15]. The dataset is split randomly
into a training set and a testing set. In one set of experiments the splits are of
equal sizes (316 subjects each) and in another set the training set has only 100
subjects and the test set has 532 subjects. Testing is done by considering images
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Algorithm 1 Learning Attribute-Consistent Matching

1: INPUT: x,y, T ,L, λA, λB , C, T
2: Initialize A1 and B1 randomly
3: for t = 1 . . . T do
4: Find the violating triplets I(At,Bt) (Equation 7)

5: Calculate ∂H(At,Bt)
∂At

(Equation 6)

6: Set ηA = 1
λAt

7: Set At+ 1
2

= (1− ηAλA)At + ηA
∂H(At,Bt)

∂At

8: Set At+1 = min

{
1, 1√

λA‖A‖F

}
At+ 1

2

9: Find the violating indices Jk(At,Bt) for each k (Equation 10)

10: Calculate ∂H(At,Bt)
∂Bt

(Equation 9 for each k)

11: Set ηB = 1
λBt

12: Set Bt+ 1
2

= (1− ηBλB)Bt + ηB
∂H(At,Bt)

∂Bt

13: Set Bt+1 = min

{
1, 1√

λB‖B‖F

}
Bt+ 1

2

14: end for
15: OUTPUT: AT+1 and BT+1

from Camera A as probe and evaluating their matches from images in Camera
B. All the benchmarking results are averages of 10 runs.

Indoor-ReID was collected in an indoor office environment, using 4 different
cameras at varying angle and under different lighting conditions. It contains over
28,000 images from 290 different subjects. The images were generated by sam-
pling images from several trajectories obtained over a few hours of surveillance
data. Since a subject may appear several times over different tracks, we manually
annotated the identities across tracks. We also annotated 16 attributes for each
subject, which include 10 attributes for attire description (sleeve length, pants
length, hair length, top color, pants color, hair color, top pattern, hat, facial
hair, glasses), 3 attributes for non-attire description (gender, build, complex-
ion), and 3 attributes for carry-on objects (bag, backpack, handheld). Some of
the collected attributes are multivalued, e.g . color is chosen to be the dominant
color and is selected out of the 11 universal color names in Berlin and Kay [3].
Figure 2 illustrates some samples from our dataset. To evaluate our approach we
split the dataset into a training set and a testing set of equal size with almost
identical attribute distributions. At test time we calculate the distances between
two tracks as the distance between two randomly sampled representative images,
one from each track. The same sampled images are used for all the benchmarks
to ensure a fair comparison. We also average the results for both setups over 10
runs.

We extract the same features used in recent benchmarks [11, 20, 1] for both
VIPeR and Indoor-ReID. We divide each image into overlapping patches of size
8 × 8 with 50% overlap in both directions, which results in 341 patches. From
each patch we collect 8-bin color histograms for YUV and HSV color spaces, and
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Fig. 2. Sample images from our dataset (Indoor-ReID). The dataset contains over
28,000 images of over 290 different subjects captured under diverse lighting and view-
point conditions. The dataset is also annotated with 16 different attributes for each
subject.
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Fig. 3. CMC Curves for VIPeR and Indoor-ReID. The curve for the joint model using
the coupled appearance-attribute space dominates the two baseline curves in all graphs.
The first graph for VIPeR was created with an even training/test split (316/316), while
the second graph figure was created with a split of 100 training subjects and 532 test
subjects. For Indoor-ReID the dataset was split evenly.

additionally LBP histograms using a grayscale representation of the image. We
then concatenate each feature type separately for all the patches in each image
as in [20] and proceed to perform unsupervised dimensionality reduction using
PCA to project the three feature sets to 100, 20, and 40 dimensions respectively.
Our approach would then discriminatively project this down to an even lower
dimensional subspace of only 50 dimensions.

To evaluate the contribution of the coupling, we report the results against
two baselines. The first baseline represents the stripped ranking formulation in
Equation 3, where the data is basically just projected to a lower dimensional
subspace. As a second baseline we report the results using a two-stage approach,
where we augment our extracted features using the output of separately trained
attribute classifiers before optimizing the ranking formulation. This baseline val-
idates that the performance gain in the joint model is due to using a coupled
appearance-attribute subspace and not just due to utilizing attribute informa-
tion. We finally report our attribute classification accuracies on both datasets
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VIPeR Ranks (split = 316/316)

Approach r=1 r=5 r=10 r=20

Joint Model 29.54 60.34 75.95 87.34
Baseline (two-stage) 27.85 58.65 73.42 86.92
Baseline (no attributes) 26.58 58.23 73.00 85.65

RCCA [1] 30.00 - 75.00 87.00
RPLM [11] 27.00 - 69.00 83.00
sLDFV [18] 26.53 56.38 70.88 84.63
eSDC [30] 26.74 50.70 62.37 76.36
LFDA [20] 24.18 - 67.12 -
CPS [6] 21.84 44.64 57.21 71.23
PCCA (χ2

RBF) [19] 19.27 48.89 64.91 80.28
SDLAF+AIR [15] 17.40 39.04 50.84 67.27

VIPeR Ranks (split = 100/532)

Approach r=1 r=5 r=10 r=20

Joint Model 11.05 28.91 41.30 54.83
Baseline (two-stage) 6.35 20.81 31.24 46.17
Baseline (no attributes) 5.94 19.89 30.60 45.15

PCCA (χ2
RFB) [19] 9.27 24.89 37.43 52.89

PRDC [31] 9.12 24.19 34.40 48.55

Table 1. Re-identification quantitative results on VIPeR using two different splits.
The numbers are the percentage of correct matches at rank r, i.e. in the top ranked
r images. In our results we note specifically that augmenting the subspace with the
attributes in the joint model significantly improved the results, given a fixed subspace
dimensionality.

using the 50/50 split. On Indoor-ReID the multi-class attributes were expanded
to n-binary valued attributes for the training, and the predicted attribute value
at test time is the one with the highest score. We finally compare the attribute
classification results on VIPeR to those reported in [15]. The model parameters
λA, λB , and C are set by cross validation to 10−2, 10−2, 10−3 respectively for
all our experiments.

4.2 Results

The Cumulative Matching Characteristic (CMC) curve has been adopted as the
standard metric for evaluation for person re-identification systems. The curve
illustrates the likelihood of the correct match being in the top r ranked images
for each rank r. Our CMC curves for both VIPeR and Indoor-ReID are shown
in Figure 3. The first graph for the VIPeR dataset uses the even training/test
split (316/316) while the second graph uses the more challenging 100/532 split.
The curve for our joint model dominates the two baseline curves, more clearly
on the bottom figure, demonstrating the performance gain that the coupling
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Indoor-ReID Ranks (even split)

Approach r=1 r=5 r=10 r=20

Joint Model 19.51 35.77 45.53 59.35
Baseline (two-stage) 13.82 34.15 43.90 50.41
Baseline (no attributes) 13.01 34.15 44.72 50.41

Table 2. Re-identification quantitative results on Indoor-ReID. The numbers are the
percentage of correct matches at rank r, i.e. in the top ranked r images. The joint
model projecting to the coupled space significantly outperformed the baseline model,
given a fixed subspace dimensionality.

achieves. Similarly, the third graph shows the CMC curves for the new Indoor-
ReID dataset, and the joint model with the coupled subspace is also clearly
dominating the two baseline curves.

We also report the numbers for comparison in Tables 1 and 2. Our joint
model achieves the highest accuracies across all reported ranks. Using better
feature descriptors is likely to even increase this gain, as can be seen from the two
reported performances for ITML ([31] and [12]). We outperform PCCA [19] using
the same kernel (sqrt), number of negative examples (10), and same subspace
dimensionality (30). Our results also demonstrate that integrating the semantic
aspect by coupling attribute classification and matching significantly improved
the performance across all experiments. This effect is even more pronounced in
the second set of experiments on VIPeR. Similarly, on Indoor-ReID the joint
model projecting to the coupled space significantly outperformed the baseline
model.

We finally quantify our attribute classification results on both datasets in Ta-
ble 3. For VIPeR we compare with the reported numbers from Layne et al . [15].
We achieve better accuracies for most attributes using the simple linear classifiers
in our model. We also report our attribute classification accuracies on Indoor-
ReID. Since some of the labeled attributes for Indoor-ReID are multivalued, we
also report the random chance performance. During training we expanded the
multivalued attributes to n-binary attributes, and at test time we predict the
attribute value with the largest score.

5 Conclusion

We presented a joint learning framework for attribute-consistent matching. We
integrate semantic attributes and person re-identification by projecting the input
images to lower dimensional coupled appearance-attribute subspace. Matching
in this subspace exhibits some invariance to the severe lighting conditions and
pose variations that hinder appearance-based matching models. We evaluated
our model on VIPeR, a standard benchmark dataset for person re-identification,
as well as a new large scale dataset we collected and annotated with attributes



12 Khamis et al .

Approach AIR [15] Ours

Shorts 79 88.8
Sandals 64 93.3
Backpacks 66 64.2
Jeans 76 69.3
Carrying 75 71.0
Logo 59 78.7
V-neck 44 91.6
Open-outer 64 76.6
Stripes 41 92.3
Sunglasses 66 76.2
Headphones 74 97.5
Shorthair 52 50.0
Longhair 65 66.9
Male 68 49.3
Skirt 67 95.2

Average 64 77.4

Approach Random Ours

Sleeve Length 50.0 62.7
Pants Length 50.0 86.9
Hair Length 33.3 78.6
Hat 50.0 96.1
Top Color 9.1 22.3
Pants Color 9.1 38.0
Hair Color 9.1 47.5
Top Pattern 25.0 75.1
Bag 50.0 67.0
Backpack 50.0 91.2
Handheld 50.0 58.9
Glasses 50.0 58.2
Gender 50.0 74.0
Facial Hair 50.0 96.4
Build 33.3 62.4
Complexion 33.3 57.8

Average 37.6 67.1

Table 3. Attribute classification results on VIPeR and Indoor-ReID. Our classification
accuracies on VIPeR are higher than those of AIR [15] on almost all attributes.

relevant to the problem. We report results that outperform several state-of-the-
art methods on VIPeR and demonstrate on both datasets that the performance
gain by the joint model improves over the baselines and over prior art using the
same input features.
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11. Hirzer, M., Roth, P.M., Köstinger, M., , Bischof, H.: Relaxed pairwise learned
metric for person re-identification. In: ECCV (2012)
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