Collective Activity Detection using Hinge-loss Markov Random Fields

Ben London, Sameh Khamis, Stephen H. Bach, Bert Huang, Lise Getoor, Larry Davis

Motivation

Motivation

Classify the individual actions

Motivation

- Classify the individual actions
- Track the multiple targets

• Action transitions are unlikely

• Action transitions are typically not arbitrary

• Individual actions are consistent in proximity

• Individual actions are consistent in proximity

Related Work

Original action recognition work focused on the isolated person case

Shuldt et al., ICPR 2004

Blank et al., CVPR 2005

• Following work investigated either pairwise interactions or group activity as the activity of the majority

Ryoo and Agarwal, ICCV 2009

Lan et al., NIPS 2010

Related Work

 More recent work looked at coupling activity recognition, tracking, and scene labeling

Choi and Savarese, ECCV 2012

Khamis et al., ECCV 2012

• While others modeled activities at multiple levels: individual, group, and inter-group

Amer et al., ECCV 2012

Our Approach

An Introduction to Hinge-loss MRFs and PSL

Our Approach

- Problem needs scalable solution that handles complex dependencies and tracking constraints
- Hinge-loss Markov Random fields (HL-MRFs) are a new class of models that meet these goals
 - Log-concave densities over continuous variables
 - Support fast inference of global solutions
 - New paper on structured prediction at UAI 2013
- Probabilistic soft logic (PSL) allows easy encoding of intuitions
 - Converts logical rules to HL-MRFs

Hinge-loss Markov Random Fields

$$p(\mathbf{Y}|\mathbf{X}) = \frac{1}{Z} \exp\left[-\sum_{j=1}^{m} w_j \max\{\ell_j(\mathbf{Y}, \mathbf{X}), 0\}^{p_j}\right]$$

- Continuous variables in [0,1]
- Potentials are hinge-loss functions
- Subject to arbitrary linear constraints
- Log-concave!

Inferring Most Probable Explanations

• Objective:

$$\arg\max_{\mathbf{Y}} p(\mathbf{Y}|\mathbf{X}) = \arg\min_{\mathbf{Y}} \sum_{j=1}^{m} w_j \max\{\ell_j(\mathbf{Y}, \mathbf{X}), 0\}^{p_j}$$

- Convex optimization
- Decomposition-based inference algorithm using the ADMM framework

Alternating Direction Method of Multipliers

- Inference with ADMM is fast, scalable, and straightforward
- Optimize subproblems (ground rules) independently, in parallel
- Auxiliary variables enforce
 consensus across subproblems

Weight Learning

- Various methods to learn from training data:
 - approximate maximum likelihood
 - o maximum pseudolikelihood
 - large-margin estimation
 - o [Broecheler et al., UAI 2010; Bach et al., UAI 2013]
- State-of-the-art learning performance on
 - Collective classification
 - Social-trust prediction
 - Preference prediction
 - o Image reconstruction
- Here we use approximate maximum likelihood

Probabilistic Soft Logic

- HL-MRFs are easy to define
- Hinge-losses can generalize logical operators

1.8: $Doing(X, walking) \leftarrow SamePerson(X, Y) \land Doing(Y, walking)$

- Lukasiewicz T-norm
 - $\circ A \lor B = \min\{1, A + B\}$
 - $\circ A \land B = \max\{0, A + B 1\}$

Grounding to HL-MRFs

Ground out first-order rules

- Variables: soft-truth values of atoms
- Hinge-loss potentials: weighted distances to satisfaction of ground rules
- $w: A \rightarrow B$ $w: \neg A \lor B$ $w \times (1 - \min\{1 - A + B, 1\})$ $w \times \max\{A - B, 0\}$
- The effect is assignments that satisfy weighted rules more are more probable

A PSL Model for Collective Activity Detection

A Collective Activity Detection Model in PSL

Features: Low-Level

 Histogram of Oriented Gradients (HOG) [Dalal & Triggs, CVPR 2005]

- Describe image patches by a distribution of gradient magnitudes binned by angle
- We train SVMs to predict on HOG features

Features: Low-Level

Action Context Descriptor (ACD) [Lan et al, NIPS 2010]

- Model context by aggregating SVM outputs on HOG features across multiple spatiotemporal neighborhoods
- E.g, actions like talking cannot be represented by the HOG features of one person

Local Information

Use low-level detectors

 $w_{local,a}$: Doing(X, a) \leftarrow Detector(X, a)

• E.g.,

$$\begin{split} & w_{local,walking} : \text{Doing}(X, walking) \leftarrow \text{Detector}(X, walking) \\ & w_{local,talking} : \text{Doing}(X, talking) \leftarrow \text{Detector}(X, talking) \\ & w_{local,walting} : \text{Doing}(X, walting) \leftarrow \text{Detector}(X, walting) \end{split}$$

(defined for all actions)

Frame Consistency

- Most people in frame do the same action
- Ground truth is aggregate of descriptors

 $W_{\text{frame,a}}$: Doing(X, a) \leftarrow Frame(X, F) \land FrameAction(F, a)

Effect of Proximity

• People that are close (in frame) are likely doing the same action

 $w_{\text{prox},a}$: Doing(X, a) \leftarrow Close(X, Y) \land Doing(Y, a)

Closeness is measured via a radial basis function

- Persistence rules
 - People are likely to continue doing the same action

```
w_{\text{persist,a}}: Doing(Y, a) \leftarrow SamePerson(X, Y) \land Doing(X, a)
```

- Requires identity maintenance for SamePerson
- Identity maintenance

 w_{id} : Same(X, Y) \leftarrow Sequential(X, Y) \land Close(X, Y)

Action Transitions

Can define rules for transitioning between actions

 $w_{trans,a,b}$: Doing(Y, b) \leftarrow SamePerson(X, Y) \land Doing(X, a)

- Defined over all pairs of actions (a,b)
- Effect is similar to the state transition matrix of an HMM

Priors and Constraints

- Prior beliefs
 - Encode prior beliefs about SamePerson and Doing predicates

w: \sim SomePerson(X, Y) w: \sim Doing(X, a)

- Constraints
 - Functional constraint on Doing ensures that soft-truth values for each person sum to 1
 - Partial-functional constraint on SamePerson ensures that soft-truth values for each person sum to at most 1

Experiments

Dataset

- University of Michigan, "Collective Activity"
- Annotated activities, poses, trajectories
 - We don't use poses, trajectories
 - We only use activity annotations for training
- 2 common splits:
 - 5-label: [crossing, walking, waiting, talking, queueing]
 - 44 sequences
 - 6-label: [crossing, waiting, talking, queueing, dancing, jogging]
 - 63 sequences

http://www.eecs.umich.edu/vision/activity-dataset.html

PSL Model

 w_{id} : Same(X, Y) \leftarrow Sequential(X, Y) \land Close(X, Y)

w_{idprior}: ~SamePerson(X, Y)

For all actions a:

 $w_{local,a}$: Doing(X, a) \leftarrow Detector(X, a)

 $w_{\text{frame},a}$: Doing(X, a) \leftarrow Frame(X, F) \land FrameAction(F, a)

 $w_{prox,a}$: Doing(X, a) \leftarrow Close(X, Y) \land Doing(Y, a)

 $w_{\text{persist,a}}$: Doing(Y, a) \leftarrow SamePerson(X, Y) \land Doing(X, a)

 $W_{prior,a}$: ~Doing(X, a)

Methodology

- Measure benefit of high-level reasoning
 - One model using HOG SVM scores, another using ACD SVM scores
 - Measure lift over low-level detectors
- Leave-one-out cross-validation
 - Train on all but one sequence
 - Test on hold-out
 - Accumulate test statistics over all hold-outs
 - Compensates for varying lengths and label distributions

Results

	5-Action		6-Action	
	Accuracy	F1	Accuracy	F1
HOG SVM	0.474	0.481	0.596	0.582
HL-MRF + HOG	0.598	0.603	0.793	0.789
ACD SVM	0.675	0.678	0.835	0.835
HL-MRF + ACD	0.692	0.693	0.860	0.860

What about MLNs?

- Also compare against an identical Markov logic network (MLN) model
 - Inference and MLE in MLNs are generally intractable
 - MaxWalkSat for learning
 - MCSAT for test-time inference

Results

	5-Action		6-Action	
	Accuracy	F1	Accuracy	F1
HOG SVM	0.474	0.481	0.596	0.582
MLN + HOG	0.657	0.657	0.809	0.803
HL-MRF + HOG	0.598	0.603	0.793	0.789
ACD SVM	0.675	0.678	0.835	0.835
MLN + ACD	0.687	0.685	0.850	0.850
HL-MRF + ACD	0.692	0.693	0.860	0.860

Speed

Average running time

	Cora	Citeseer	Epinions	Activity
MLN	110.9 s	184.3 s	212.4 s	344.2 s
HL-MRF	0.4 s	0.7 s	1.2 s	0.6 s

[Bach et al., UAI 2013]

• MLN inference is **slow**

MCSAT is poly-time, but slow

• HL-MRF inference is fast

 In practice, we find that inference scales linearly with the number of potentials

Improved PSL Model

- Scene consistency
 - Certain sequences tend to have a single majority action
 - Improved performance in [Khamis et al., ECCV 2012]
- In-frame/sequence interactions

 E.g., Maybe walking and crossing frequently co-occur together?
- Latent variables
 - E.g., Group actors into same-action clusters, reason about cluster interactions

Conclusion

- HL-MRFs are a powerful class of graphical models
 - Capable of fast MPE inference
 - Faster inference than discrete models (e.g., MLNs)
- PSL facilitates easy construction of HL-MRFs
 First-order-logic syntax
- Using HL-MRFs/PSL for high-level vision yields significant improvement over low/mid-level detectors

Thank you!

- PSL info at http://psl.cs.umd.edu/
- M. R. Amer, D. Xie, M. Zhao, S. Todorovic, S. C. Zhu: Cost-Sensitive Top-Down/Bottom-Up Inference for Multiscale Activity Recognition. ECCV 2012
- S. Bach, B. Huang, B. London, L. Getoor. Hinge-loss Markov random fields: convex inference for structured prediction. UAI, 2013
- M. Blank, L. Gorelick, E. Shechtman, M. Irani, R. Basri. Actions as Space-Time Shapes. ICCV, 2005
- M. Broecheler, L. Mihalkova, L. Getoor. Probabilistic similarity logic. UAI, 2010.
- W. Choi, S. Savarese. A Unified Framework for Multi-target Tracking and Collective Activity Recognition. ECCV 2012
- S. Khamis, V. I. Morariu, L. S. Davis. Combining Per-Frame and Per-Track Cues for Multi-Person Action Recognition. ECCV, 2012
- T. Lan, Y. Wang, W. Yang, G. Mori: Beyond Actions: Discriminative Models for Contextual Group Activities. NIPS 2010
- M. S. Ryoo, J. K. Aggarwal. Spatio-Temporal Relationship Match: Video Structure Comparison for Recognition of Complex Human Activities. ICCV 2009
- C. Schult, I. Laptev, B. Caputo. Recognizing Human Actions: A Local SVM Approach. ICPR, 2004